90% RENEWABLE BY 2050

The Benefits of Achieving Vermont’s ENERGY & EMISSIONS COMMITMENTS

2018 ANNUAL PROGRESS REPORT
Mission & goals

Energy Action Network (EAN) works to achieve Vermont’s 90% renewable by 2050 total energy commitment and to significantly reduce Vermont’s greenhouse gas emissions in ways that create a more just, thriving, and sustainable future for Vermonters.

Collective impact approach

Energy Action Network (EAN) is a diverse network of nonprofits, businesses, public agencies, and other organizations working together in a collective impact framework and supported by a core staff to further the Network’s mission.

We approach our work together through two key lenses:

1) **Total energy transformation**: We work toward efficient and renewable energy use across all sectors.

2) **Strategic leverage areas**: We work to enable systemic change at a scale and pace necessary to achieve Vermont’s energy & emissions commitments.

Total energy transformation

Strategic leverage areas

The core staff of EAN supports the work of Network members in the following ways:

- **Steward a common agenda** for Network members and partners.
- **Collect data and measure results** through regular tracking and analysis of progress.
- **Coordinate mutually reinforcing activities** to develop, share, and advance high-impact ideas.
- **Ensure continuous communication** to and across the Network.
It’s time to bend the curve

Energy Action Network and the State of Vermont have a shared commitment to achieving 90% renewable energy by 2050, as outlined in Vermont’s 2016 Comprehensive Energy Plan (CEP). The first milestone of the CEP is 25% by 2025. Recent progress in the electric sector may allow us to meet that milestone, but bending the curve to reach 90% by 2050 will require far more progress in other sectors very soon.

The two stories of Vermont

While we’re close to meeting our 2025 renewable energy milestone, Vermont has much more to do to meet our commitment to the Paris Climate Agreement by 2025. We’ve only reduced our greenhouse gas emissions by 2% below 2005 levels — and our emissions are up 16% since 1990.

We can tell two stories about Vermont: a renewable energy leader and a climate laggard. Both are true.

Throughout this report, we identify the areas where we can match our renewable progress with emissions reductions to meet and exceed our commitments by 2025.

Vermont’s greenhouse gas emissions have been increasing despite significant reduction commitments

Greenhouse gas (GHG) emissions are on the rise statewide. We are now 16% above 1990 levels, and just 2% below peak 2005 levels. Between 2013–2015, emissions from transportation and thermal fuels together accounted for nearly 80% of Vermont’s overall emissions increase.1

What will it take to meet our commitments?

Vermont’s GHG emissions by sector

Transportation & thermal energy are the largest contributors to Vermont’s greenhouse gas emissions

Our two biggest sources of emissions are transportation and thermal energy use, which together cause over 70% of Vermont’s GHG pollution. From 2013–2015 (the most recent year for which data is available) energy emissions were responsible for 98% of the GHG increase statewide (46% from transportation, 33% from thermal, and 19% from electricity).1

The energy conversation is a climate—and an equity—conversation

Though some may talk about transportation, thermal, and electricity as equal parts of Total Energy, each energy sector is unique in Vermont when it comes to relative energy use, emissions produced, and the energy burden (share of total energy costs for Vermonters) each creates. On all counts, transportation is the biggest challenge.

1. Thermal and transportation based on Energy Information Administration 2016 site energy; Electricity based on Department of Public Service 2017 site energy, after accounting for RECs.
3. Mapping Total Energy Burden in Vermont, Justine Sears, Vermont Energy Investment Corporation (July 2016); Note: VEIC only considered fuel or electricity related costs (not equipment or maintenance costs).
How renewable are we?

Total energy in Vermont

In total, Vermont has reached almost 20% renewable across transportation, thermal, and electric energy. That puts our 25% renewable by 2025 Comprehensive Energy Plan target within reach. But it’s clear that the majority of this progress has come from the electric sector, with transportation and thermal significantly further behind. Given the relative energy use of those two sectors, much more work will need to happen in thermal and transportation, even to reach 25% renewable.

While the State calculates total energy using site energy, energy can also be calculated using source energy, which more comprehensively accounts for losses from production and transmission.

Source energy

All energy generated and consumed, including energy lost in production and delivery.

Vermont’s total source energy is 18.5% renewable.

Site energy

Energy directly consumed in buildings and vehicles.

Vermont’s total site energy is 19.4% renewable.

MEMBER PROFILE: Tara Kulkarni

Associate Professor, Department of Civil and Environmental Engineering; Director, Center for Global Resilience and Security, Norwich University

“Resilience is about ensuring that people will always have a reliable source of clean water and food, uninterrupted energy, and a stable home and workplace, regardless of the changes in climate. We believe that complex global challenges can only be solved by creative and innovative teams. That’s who we are, researchers and entrepreneurs, seeking to be leaders in climate resilience and security and citizens of this global community.”

The Center for Global Resilience and Security (CGRS) at Norwich University (NU), is a community driven research center, focused on the intersections of water, energy, infrastructure, and climate impacts.
Breaking it down by sector

When looking at each sector, it’s clear that electricity is the most renewable, at 63%. However, the electric sector only makes up 14% of Vermont’s total energy use. Transportation and thermal combined make up 86% of our energy use and are only 5% and 19% renewable, respectively.

“VEEP regularly gets to work with students who are curious, engaged, and want to make the world a better place. We owe our young people the opportunity to learn to use science, technology, and critical thinking skills to help create a more sustainable future.”

VEEP works to build a deep understanding of energy through education, encouraging choices that result in sustainability in our communities, economy and environment. VEEP has supported hands-on energy and climate education in more than three-quarters of Vermont schools.
What would it take to meet our Paris commitment?

Path to Paris: EAN has modeled one path for how Vermont could achieve our Paris Climate Agreement commitment based on currently available energy technologies and proven best practices.

Getting to the Paris commitment would require all of these efforts, plus 20% more from additional measures. For example, if Vermont put fewer than 90,000 EVs on the road, we would have to make up the difference in another area in order to meet the commitment.

The 20% buffer captures additional carbon reductions necessary by 2025 including:

- Non-energy related emissions reductions strategies, for instance carbon sequestration in forestry or agriculture.
- New products or technology advancements that we don’t yet have sufficient data to model, including electric lawnmowers and other off-road and farm vehicles.
- Reduction in energy consumption due to efficient technology advancements, increased fossil fuel prices, or fewer heating degree days.

2.53 MMTCO$_2$e reduction by 2025 is required to meet the Paris Agreement1

1. EAN calculations based on relative emissions reductions in MMTCO2e based on 2018 Greenhouse Gas Emissions Inventory Brief (1990-2015), VT Agency of Natural Resources. 2. EVs assumes 50% AEV and 50% PHEV. Transit includes direct reduction of single occupancy vehicle commutes through buses, trains, rideshare, vanpool, etc. 3. Heat pumps and heat pump water heaters assume switching from oil or propane heaters to 75% renewable electricity. Advanced wood heat includes automated, central wood heat systems and pellet stoves. Weatherization assumes project results in 25% reduction in energy use (the statutory goal). 4. Wind includes imported wind, since there are no plans to build wind in Vermont prior to 2025.
How Vermonter benefit: a case study

Let’s take a look at a real 1950 ranch house in Jericho, Vermont. The homeowners, one recently retired from the Vermont Air National Guard and one a bookkeeper at a local school district, recently completed a Zero Energy Now (ZEN) project to get their home off fossil fuels and nearly eliminate their carbon emissions.1

FINANCING: The couple opted to roll the costs of these home energy improvements into a five year home equity loan to start as their mortgage was retired. Before the project, they were paying $930.45 for their mortgage and energy costs. After the project and the retirement of their mortgage, they are paying $873.61 for a five-year period. Once the loan is retired in 2021, their monthly costs will just be for energy, at a little over $20/month.

1. Zero Energy Now (ZEN), Building Performance Professionals Association. Note: The ZEN project only included thermal and electric energy projects, so all cost and emissions figures are only related to those two sectors. 2. Extrapolated by EAN based on energy use post-ZEN project.

MEMBER PROFILE: Richard Faesy
Principal, Energy Futures Group of Hinesburg, VT

“We’d like to think our work on advancing heat pumps, energy code development, implementation of Zero Energy Now, legislative advocacy and multiple papers, presentations and pitches have helped Vermont move closer to our energy goals. And, our net zero office demonstrates how even in Vermont, we can produce 100% of our energy from the roof.”

Energy Futures Group is a consulting firm specializing in the design, implementation, and evaluation of programs and policies to promote investments in clean energy.

THERMAL & ELECTRIC ENERGY USE
80.76 BTU
75% fossil fuels
25% electricity (utility mix)

BEFORE

AFTER

THERMAL & ELECTRIC ENERGY USE
33.36 BTU
95% electricity (85% on-site solar)
5% fossil fuels (for cooking)

HEATING & ELECTRIC COSTS
$255.96 annually

THERMAL & ELECTRIC EMISSIONS
Responsible for over 222,184 lbs of CO2 in 30 years

TRANSPORTATION
After the ZEN project, the owners invested in an EV. They plan to expand their solar to cover the additional electric load.

Actions
Install 7.85 kW of solar to cover existing and increased electric load
Air source heat pump and heat pump water heater
Air sealing and insulation in basement and attic

Much of this recirculates in the local economy, supporting seven Vermont businesses and their employees.
We can’t get there without efficiency

What will it take to reach 90% by 2050?

- **81%**
 - Appliances/Lighting 7%
 - Electric Generation/Transmission 15%
 - Thermal 36%
 - Transportation 42%

- **10%**
 - 90% renewable

- **19%**
 - 19% renewable

Total energy efficiency

Efficiency isn’t just about decreasing the amount of energy we use for our current electric, heating, and transportation systems. We also achieve (often far larger) efficiency gains when we switch from fossil fuel combustion systems to more technologically advanced renewable systems that use much less energy.¹

We can do it — we already have

Electric savings from Efficiency VT & Burlington Electric Department (2000-15)²

- **81% savings from efficiency**

![Graph showing electric savings from Efficiency VT & Burlington Electric Department (2000-15)](image)

Efficiency utilities helped Vermonters save over 7.6 million kilowatt hours between 2000-2015.

However, our electric use can’t keep going down. As we strategically electrify more of our transportation and heating, electric use will have to go up. But this increase in electrification will significantly decrease total energy use and drive down emissions statewide.

MEMBER PROFILE: Abby White

Director of Marketing, Communications & Public Affairs, Efficiency Vermont

“Our customers look to us for straightforward solutions to help them save money and live more comfortably. Whether you’re a homeowner on a fixed income, a small business owner, or operator of a large manufacturer, Efficiency Vermont provides services and incentives to help you reduce energy use and lower your costs.”

Founded in 2000, Efficiency Vermont is the statewide resource for advancing sustainable energy solutions. Through technical services and financial support, we help Vermont homeowners and businesses reduce energy use, save money, and live more comfortably.
Healthy homes, healthy lives

The Vermont Department of Health reports strong evidence for the positive impact of home weatherization on general health, productivity, social health, and upper respiratory health.

They estimate that the **10-year benefit of weatherization, in health and fuel savings, is nearly three times greater than the initial investment** per household.²

MEMBER PROFILE: Brian Gray

General Manager, The Energy Co-op of Vermont

“The Energy Co-op is proud to collaborate with Vermont homeowners to provide reliable and affordable home heating services. We offer efficiency advice and provide **tailor-made pathways to reduce energy consumption** that encourage our members to ‘Use Less and Save More.’”

The Energy Co-op of Vermont is a unique member-owned energy company serving northwestern Vermont since 2001. Our mission is to help Vermonters make their homes more comfortable, healthy and energy-efficient while providing services that help transition them to cleaner-burning and renewable fuels.
Fossil fuels are a strain on Vermonters and a drain on the Vermont economy

Prices for fossil fuels like propane and fuel oil have historically been the highest and most volatile. Weatherizing your home or business can cut these costs by reducing energy use. Even better, switching to renewable heating options offers lower and more stable fuel prices.

Average heating fuel pricing (1998-2018)¹

VT Heat Energy Sources²

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Oil</td>
<td>34%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>25%</td>
</tr>
<tr>
<td>Propane</td>
<td>19%</td>
</tr>
<tr>
<td>Cordwood</td>
<td>11%</td>
</tr>
<tr>
<td>Bagged Pellets</td>
<td>4%</td>
</tr>
<tr>
<td>Electric Heat</td>
<td>3%</td>
</tr>
<tr>
<td>Other Non-Renewable</td>
<td>3%</td>
</tr>
<tr>
<td>Automated Wood Heat</td>
<td>2%</td>
</tr>
</tbody>
</table>

Dollars Spent on Fossil Fuels

Because 78% of Vermonters were heating their homes with fossil fuels, Vermonters spent nearly an extra **$240 million in 2018** on heating fuel than if we were getting 100% of our heat from renewable sources.⁴ Of that, over **$185 million left the Vermont economy entirely.⁵**

MEMBER PROFILE: Adam Sherman
Senior Consultant, Biomass Energy Resource Center (BERC) at VEIC

“Vermont is widely recognized as an international leader in the use of modern wood heating systems in the residential, commercial, and institutional markets. Through a combination of weatherization, beneficial electrification, and expanded use of modern wood heating, we can reach our thermal goals!”

The Biomass Energy Resource Center (BERC) at VEIC has a long-lived reputation as a source of independent and impartial information and services regarding the advancement of modern wood heating as an effective strategy to reduce dependence on fossil heating fuels, strengthen local economies, and encourage the local use of wood harvested from well-managed forests.
Are we moving fast enough on fuel switching?

In order to achieve the numbers set forth in the 2025 “Path to Paris” analysis, we would need to convert about a third of Vermont’s 335,224 housing units\(^1\) from fossil fuels to renewable heat by 2025. How are we doing so far?

Heat pump systems in Vermont

![Heat pump systems in Vermont graph]

The Path to Paris models 90,000 additional heat pump systems by 2025. Historically, adoption has more than doubled each year, which is a good sign! Going forward, adoption would need to increase by 37% each year to reach 90,000 systems by 2025.\(^2\)

Despite being incentivized statewide for only a few years, heat pumps have seen impressive adoption trends. It’s a slightly different story for advanced wood heat.

Historically, nearly all of our growth in advanced wood heat has come from pellet stoves. Going forward, the Biomass Energy Resource Center (BERC) has modeled moderate growth in pellet stoves and significantly more growth in automated advanced wood heat systems to meet our state goals.\(^3\)

Advanced wood heat (AWH) systems in Vermont

![Advanced wood heat (AWH) systems in Vermont graph]

Despite being incentivized statewide for only a few years, heat pumps have seen impressive adoption trends. It’s a slightly different story for advanced wood heat.

Historically, nearly all of our growth in advanced wood heat has come from pellet stoves. Going forward, the Biomass Energy Resource Center (BERC) has modeled moderate growth in pellet stoves and significantly more growth in automated advanced wood heat systems to meet our state goals.\(^3\)

MEMBER PROFILE: Maura Adams
Program Director, Northern Forest Center

“Every building that converts to Automated Wood Heat supports our forest economy and reduces greenhouse gases. The 163 boilers we’ve helped install have generated $3.5 million for the region, and that impact grows larger every year.”

The Northern Forest Center is a regional innovation and investment partner creating rural vibrancy by connecting people, economy, and the forested landscape. The Center builds public awareness about Automated Wood Heat as an alternative to fossil fuels and advocates for supportive public policies and fuel-switching incentives.

2. Historic heat pump data extrapolated from Efficiency Vermont rebate data and assumes rebates capture 75% of statewide installations.
Are we moving fast enough on electric vehicles?

While electric vehicle adoption has been growing, in order to reach the Path to Paris model of **90,000 additional vehicles by 2025**, adoption would need to grow about 65% each year, significantly faster than it has been to date.¹

For context, an estimated 264,000 new vehicles will be sold in VT by 2025, which means EVs would have to make up a third of those vehicle sales.²

Factors in electric vehicle progress

<table>
<thead>
<tr>
<th>BRAKES</th>
<th>ACCELERATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturers (Tesla, Chevrolet) hitting phase-out of federal tax credit incentive</td>
<td>New manufacturers getting involved in electrification</td>
</tr>
<tr>
<td>Automakers discontinuing some popular electric models</td>
<td>New models with all-wheel drive and in larger sizes</td>
</tr>
<tr>
<td>No Vermont state incentives available</td>
<td>Utility incentives through programs related to Vermont’s Renewable Energy Standard</td>
</tr>
<tr>
<td>Auto dealers and salespersons often lack experience and training to sell electrification</td>
<td>Upfront cost decreases</td>
</tr>
</tbody>
</table>

¹ Historic data from Drive Electric Vermont. Modeled data assumes 50% All-Electric Vehicles (AEVs) and 50% Plug-in Hybrid Electric Vehicles (PHEVs) in 2025.

² Extrapolated from Auto Alliance Vermont State Facts.

MEMBER PROFILE: Paul Costello

Executive Director, Vermont Council on Rural Development (VCRD)

“VCRD works with communities throughout Vermont to help them set and implement goals for the future. The Climate Economy Model Community program engages local residents in identifying priority projects to advance clean energy and economic progress. VCRD also leads the Climate Economy Action Team and the Working Lands Coalition to further growth in these sectors of our rural economy.”

The Vermont Council on Rural Development is a federally-recognized “State Rural Development Council” charged as a nonpartisan facilitator of local and statewide policy projects to galvanize community and economic development in service to the people of rural Vermont.
Electric vehicles and charging stations are spreading

As a key technology needed to reach our Paris goals, the adoption of electric vehicles is critically important. These maps show the towns where electric vehicles are currently registered and where you can plug those vehicles in at public charging stations.

Electric vehicles

![Electric vehicles map]

Key Takeaways

Currently over two thirds (1,912) of the 2,778 electric vehicles are Plug-in Hybrid Electric Vehicles. The other 876 are All-Electric.

Electric vehicles are registered in about 85% of Vermont communities.

Washington County is the top county for electric vehicles per capita, and Plainfield is the top town.

Charging stations

![Charging stations map]

Key Takeaways

There are 183 public charging stations across the state.

23 DC Fast Chargers are available, which can recharge a car in 30-45 minutes.

Learn more about our energy progress on the Vermont Energy Dashboard. vtenergydashboard.org

MEMBER PROFILE: Kate McCarthy

Sustainable Communities Program Director, Vermont Natural Resources Council
Transportation for Vermonters

“Investing in our historic villages and downtowns is a win-win approach: not only do we get more opportunities to save money and energy by driving less, but smart growth allows us to increase housing choice and strengthen the places we love.”

VNRC protects and restores our natural resources and communities by advocating in the State House, conducting research, and building and coordinating coalitions. One such cross-sector coalition, Transportation for Vermonter, is committed to increasing the affordability, access, and sustainability of Vermont’s transportation system.
Transit: It takes, and makes, a village

Single occupancy vehicle commutes\(^1\) alone emit approximately 1.214 MMTCO\(_2\)e annually.

Vermont transportation emissions by type\(^2\)

Studies have shown that improving and expanding transit — bus and rail — results in more efficient land use patterns, with development centered around transit hubs. This reduces vehicle miles traveled and greenhouse gas emissions in excess of the direct benefits of increased transit by encouraging walking, biking, and fewer miles traveled by community members.

An ICF International study found that these secondary impacts of increasing transit could result in up to **three times as much reduction in carbon emissions** as the primary impacts.\(^3\)

\(^1\) American Community Survey. Note: This figure only includes commutes (trips to and from work). No official data exists for total single occupancy vehicle trips.
\(^2\) 2018 Greenhouse Gas Emissions Inventory Brief (1990-2015), VT Agency of Natural Resources.

MEMBER PROFILE: Nick Charyk
Communication and Public Affairs Manager, AllEarth Renewables

“Creating a community passenger rail network is something we can do now to begin reducing emissions from the transportation sector. The Budd Cars are cost-effective, safe, and ready to roll here in Vermont.”

AllEarth Renewables has invested in a fleet of a dozen self-propelled, stainless steel Budd rail diesel cars, intended for community passenger rail service here in Vermont. AllEarth’s vision is the creation of a passenger rail network connecting Vermont’s cities and towns through an integrated public transportation system.
Going electric saves money...

Looking at the total operating cost, the American Automobile Association found that an all-electric vehicle cost 11.28 cents per mile, compared to a medium sedan at 17.76 cents per mile. That means gas vehicle drivers spend nearly $10,000 more on operations and maintenance over 150,000 miles.¹

<table>
<thead>
<tr>
<th>GAS VEHICLE</th>
<th>ELECTRIC VEHICLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>$2.74/gallon²</td>
</tr>
<tr>
<td>Oil Changes & Filter Replacement</td>
<td>$900</td>
</tr>
<tr>
<td>Tire Changes</td>
<td>$600</td>
</tr>
<tr>
<td>Engine Air Filter Replacements</td>
<td>$207</td>
</tr>
<tr>
<td>Cabin Air Filter Replacements</td>
<td>$273</td>
</tr>
<tr>
<td>Spark Plug Replacements</td>
<td>$439</td>
</tr>
<tr>
<td>Coolant Flush and Replacement</td>
<td>$110</td>
</tr>
</tbody>
</table>

Comparing just a few possible maintenance costs, the Union of Concerned Scientists found that an all-electric vehicle would save at least $1,500 on maintenance over 150,000 miles.⁴

…and reduces health costs

A 2016 study from the American Lung Association found that Vermont stands to save $313 million in total health and climate costs by transitioning to a majority of electric vehicles by 2050.⁵

¹ Your Driving Costs, American Automobile Association, 2018. ² Energy Information Administration, 2018 average Regular gas price in New England. ³ Drive Electric Vermont. Note: does not account for rate design or other programs that may reduce charging costs. ⁴ Adapted to Vermont from Going from Pump to Plug, Union of Concerned Scientists, 2017. Compares the cost of the manufacturer’s recommended services for a Chevrolet Bolt EV and a Chevrolet Sonic over 150,000 miles. ⁵ Clean Air Future, American Lung Association. ALA assumes that meeting our Zero Emission Vehicle targets would result in 65% of the fleet being zero emission vehicles in 2050.

MEMBER PROFILE: Jen Green
Sustainability Officer, Burlington Electric Department, City of Burlington

“As part of Mayor Miro Weinberger’s ‘net zero energy city’ initiative, Burlington Electric is focused on renewable transportation options for Burlington, including an e-bike rebate program and lending library, innovative financing options, bringing e-buses to Burlington, and electric vehicle rebates and charging rates.”

In 2014, Burlington became the first city in the country to source 100% of its power from renewable generation, including from biomass, hydro, wind, and solar. Served by the Burlington Electric Department, Burlington is now working to transition to net zero energy by 2030.
VELCO’s vision is to help create a sustainable Vermont through our people, assets, relationships, and operating model. As a member of the Climate Pledge Coalition, we have created an ambitious action plan for reducing our carbon footprint.”

VELCO works with Vermont’s 17 local utilities and the New England regional grid operator to ensure electric reliability in Vermont. They have installed a solar array and EV charging stations on campus, and have provided employee incentives for acquiring solar arrays, EVs, and heat pumps.
TOGETHER, WE CAN DO THIS

AllEarth’s Budd Car pulls into Montpelier, VT on a test run. Photo: AllEarth Rail/Brooke Bauer

Grassroots Solar customers Heine and Darlene Nowak stand by their new battery system. Photo: Grassroots Solar

Members of the EAN Board and staff tour the Sandia National Lab Regional Test Center in Williston, VT. Photo: EAN/Rob Fish

Vermonters sign up to learn more about Button Up at the Montpelier Farmers Market. Photo: Button Up Vermont/Paul Markowitz

Dave Frank of Sunwood Biomass explains an advanced wood heat system. Photo: VSJF/Erica Housekeeper

St. Michael’s College Sun CArnival Demo Event. Photo: Drive Electric Vermont
Creating a smart grid to accelerate Vermont’s renewable progress

Smart grid investments allow communications between devices that produce, store, and use electricity, which will reduce carbon by maximizing adoption of local renewable distributed generation, energy storage, and other smart electric devices. These technologies will enhance grid performance, build resiliency in a changing climate, and reduce carbon emissions.

Every Vermonter stands to benefit from smart grid investments.

What are smart grid investments?

Demand response programs allow utilities and customers to shift electric load away from peak demand. In 2017, there were over 15,000 Green Mountain Power customers enrolled in a demand response program.¹

Energy storage, like battery systems, help store excess generated electricity and send it back to the grid as needed.

Strategically electrifying heating and transportation loads can help shift those new electric loads to times of day when there is excess generation from solar and wind power.

A recent analysis from Energy Futures Group found that every ratepayer stands to benefit from strategic electrification.²

All of these investments can save ratepayer dollars, reduce strain on the grid, and increase the resiliency of the grid in the face of more damaging storms.

¹. Form EIA-861, Energy Information Administration, 2017. Only Green Mountain Power is required to report Demand Response activities.
². “‘Tier 3’ — Statewide Total Energy Program (STEP) Beyond Fossil Fuels,” Energy Futures Group.

MEMBER PROFILE: Scott Johnstone
CEO, Packetized Energy

“We are proud to support our utility partners with innovative solutions to reach Vermont’s ambitious 2025 milestones while keeping energy affordable for Vermonters.”

Packetized Energy is a Burlington-based startup that creates virtual batteries from devices like water heaters and electric vehicle chargers to provide balancing services to utilities aiming to keep costs low while incorporating more renewable energy. The team is conducting pilots with VEC and GMP and just launched a 5-year project with Burlington Electric Department.
Vermont clean energy jobs

For the first time since tracking began in 2013, jobs in clean energy in Vermont decreased (-1.7%) in 2017. However, clean energy jobs still make up 6% of total statewide jobs in Vermont, a higher share than any other state.¹

Vermont share of clean energy jobs by sub-sector

<table>
<thead>
<tr>
<th>Sub-sector</th>
<th>Jobs</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency</td>
<td>10,570</td>
<td>56%</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>6,263</td>
<td>33%</td>
</tr>
<tr>
<td>Clean Transportation</td>
<td>1,259</td>
<td>7%</td>
</tr>
<tr>
<td>Other</td>
<td>667</td>
<td>4%</td>
</tr>
</tbody>
</table>

KEY TAKEAWAYS¹

With 18,759 jobs, Vermont boasts the largest share of clean energy jobs in the country.

The median income for these jobs is $26.71, higher than the median income for the state.

The majority of these jobs are in energy efficiency (10,570), followed by renewable energy (6,263).

MEMBER PROFILE: Rebecca Towne

Chief Executive Officer, Vermont Electric Cooperative

“We are committed to expanding electrification of cooling, heating, and transportation systems as we continue to move towards a low-carbon and clean energy supply. We believe that by pursuing innovation and creative solutions we can ensure an even brighter and more resilient energy future that benefits our members and the environment.”

At Vermont Electric Cooperative, our core mission is to provide safe, reliable and cost effective service to our member-owners. VEC is a nonprofit, member-owned cooperative with over 32,000 members in northern Vermont.
VT has low per-capita carbon emissions, but those emissions are on the rise

The carbon (CO2) emissions of 23 states declined below their 1990 levels as of 2014. Seven states achieved double-digit CO2 emissions declines in that period — but not Vermont.

States with Double-Digit CO2 Emission Declines, 1990-2014

![Graph showing per capita energy-related CO2 emissions for selected states and the US, with Vermont (VT) having a lower value than the overall US average.]

2015 per capita energy-related CO2 emissions

<table>
<thead>
<tr>
<th>State</th>
<th>2015 Emissions (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>16.4</td>
</tr>
<tr>
<td>NY</td>
<td>8.5</td>
</tr>
<tr>
<td>CA</td>
<td>9.3</td>
</tr>
<tr>
<td>OR</td>
<td>9.5</td>
</tr>
<tr>
<td>MA</td>
<td>9.7</td>
</tr>
<tr>
<td>VT</td>
<td>9.8</td>
</tr>
<tr>
<td>MD</td>
<td>9.9</td>
</tr>
</tbody>
</table>

KEY TAKEAWAYS

Vermont has relatively low per capita carbon emissions, but those emissions have increased significantly since 1990.

Just three states, California, New York, and Massachusetts, have per capita energy CO2 emissions below 10 tons/person and have also achieved carbon emission declines below 1990 levels, as of 2014.

1. Energy Information Administration. Note: Due to data constraints, this comparison only looks at carbon emissions, not all GHG emissions. Also, EIA does not fully count carbon emissions created by Vermont’s electric use. Vermont’s per capita GHG emissions were around 16 tons of CO2e in 2015, and the US was at 20.5. In 1990, only two states, Vermont and Rhode Island, had per capita carbon emissions below 10 tons. 2. Environmental Protection Agency. Note: All states listed except Hawaii are members of the Regional Greenhouse Gas Initiative.

MEMBER PROFILE: Heather Furman

Vermont State Director, The Nature Conservancy

“The ways we protect, restore, and manage our land and water has the potential to reduce global emissions by 11.3B tons/year by 2030, offering 37% of the emissions reductions needed to hold global warming below 2 degrees Celsius. That’s huge. If we’re serious about tackling climate change, then we have to get serious about investing in nature.”

Guided by science, The Nature Conservancy works locally and globally on innovative solutions to our world’s toughest challenges so that people and nature can thrive.
Policies designed to reduce emissions

As of the end of 2018, Vermont is one of ten US states and two Canadian provinces that participate in a decarbonization program. But the Regional Greenhouse Gas Initiative (RGGI) that Vermont participates in currently only covers a small percentage of our total emissions. See how we stack up.

Percent of emissions covered by statewide decarbonization program

Vermont, New York, and Massachusetts participate in RGGI. California and Québec are members of the Western Climate Initiative (WCI), a cap and invest program. British Columbia has a province-wide carbon fee.

“RAP works with policymakers and regulators here in the US and around the world to help them navigate the complexities of the transition to a low-cost, low-carbon energy future. Reliable, clean production and efficient use of electricity are at the heart of that future, and there are many ways of getting there. As trusted advisors to decision-makers, we provide pragmatic solutions crafted to suit the particular needs of their jurisdictions.”

The Regulatory Assistance Project (RAP) is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.
Decoupling emissions & economic growth

Emissions were once tied to economic growth. That is no longer the case across the globe. Can Vermont follow suit?

Between 2000-2014, at least 35 countries including the U.S. saw their economies grow while reducing carbon emissions.¹

Québec has decoupled emissions and economic growth (2000-2017)²

- Quebec joins Western Climate Initiative
- GHG emissions: -10.0% (2000=100)
- REAL GDP: +27.5% (2000=100)

British Columbia has decoupled emissions and economic growth (2000-2017)²

- British Columbia implements carbon pricing
- GHG emissions: -5.2% (2000=100)
- REAL GDP: +49.6% (2000=100)

Our neighbors in Québec, British Columbia, and California that have instituted economy wide carbon policies have seen dramatic economic growth while also reducing emissions below 2000 levels — demonstrating that their policy implementation has not negatively impacted economic growth.

INDEX: 2000 = 100

Real GDP

GHG EMISSIONS

INDEX: 2000 = 100

Real GDP

GHG EMISSIONS

MEMBER PROFILE: April Salas
Executive Director, Revers Center for Energy, Tuck School of Business at Dartmouth College

"Dartmouth has embraced a future that includes improving global sustainability and overcoming the challenges of climate change. Open discourse, robust networks, and community action facilitate investments that produce the greatest possible impact, and enable us to build a sustainable and replicable model for positive change."

Tuck is committed to educating wise leaders to better the world of business. The Center helps build pathways of learning and connection, with a mission to inspire and shape tomorrow’s energy leaders while engaging today’s energy community.
Decoupling emissions & economic growth

In the US, 33 states decoupled economic growth and carbon emissions between 2000-2014, including Vermont. But the latest data show that Vermont’s emissions are back above 2000 levels.

Vermont’s GHG Emissions and GDP dipped between 2007-2009 during the Great Recession. For a few years during the economic recovery, Vermont’s GHG emissions remained flat, but recent years have brought a significant increase.

MEMBER PROFILE: Justin Johnson
Head, Global Strategic Markets, MMR, LLC

“Vermont can’t solve the carbon problem alone — and it doesn’t have to! Forty-six nations and 24 sub-national jurisdictions, accounting for 20% of the world’s emissions, have a price on carbon. More than 1,400 companies, including 100 Fortune 500 companies have internal carbon pricing. We can work together to create jobs and opportunity for the future.”

MMR, LLC is a Vermont government relations firm with a dynamic practice and a record of delivering results on a range of policy issues.
90% by 2050: Meeting the first milestone (2025)

Tracking Progress of Key Technology Pathways

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>UNIT</th>
<th>2010 Baseline</th>
<th>Latest Achieved¹</th>
<th>2025 Energy Milestone²</th>
<th>2025 EAN Path to Paris*</th>
<th>2050 Energy Milestone²</th>
<th>EAN Target Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSPORTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Vehicles & Plug-in Hybrids¹</td>
<td># of Vehicles</td>
<td>100</td>
<td>2,788</td>
<td>45,000</td>
<td>93,000</td>
<td>269,500</td>
<td>Total number of electric vehicles and plug-In hybrids</td>
</tr>
<tr>
<td>Light-Duty Vehicle Fleet Efficiency (LVF) (combustion engines only)</td>
<td>Fleet MPG</td>
<td>20.3</td>
<td>22.2</td>
<td>24.1</td>
<td>24.1</td>
<td>32.4</td>
<td>% of light-duty vehicle fleet (LVF)</td>
</tr>
<tr>
<td>Commerical-Industrial Fleet Efficiency</td>
<td>Fleet MPG</td>
<td>6</td>
<td>N/A</td>
<td>6.9</td>
<td>6.9</td>
<td>9</td>
<td>% fuel efficiency increase for commercial/industrial fleet (over 2010)</td>
</tr>
<tr>
<td>Biofuels²</td>
<td>Million Gallons</td>
<td>28.7</td>
<td>30.9</td>
<td>40</td>
<td>*</td>
<td>211</td>
<td>% of total fuel use for combustion engine fleet (LVF, commercial, industrial). Aviation not included.</td>
</tr>
<tr>
<td>Single Occupancy Vehicle Commute Reduction</td>
<td>% Commute Trips</td>
<td>79.2%</td>
<td>80.7%</td>
<td>67%</td>
<td>64%</td>
<td>50%</td>
<td>% of work commute trips in single occupancy vehicle</td>
</tr>
<tr>
<td>Public Transit Ridership Increase</td>
<td>Annual Riders (millions)</td>
<td>4.58</td>
<td>4.71</td>
<td>8.7</td>
<td>8.7</td>
<td>17.4</td>
<td>Total annual public transit ridership</td>
</tr>
<tr>
<td>Total Transportation Energy</td>
<td>TBTU</td>
<td>50.6</td>
<td>50.5</td>
<td>39.1</td>
<td>38.5</td>
<td>31.5</td>
<td>Total energy used for transportation</td>
</tr>
<tr>
<td>Renewable Energy Share</td>
<td>%</td>
<td>4.5%</td>
<td>4.7%</td>
<td>10%</td>
<td>15%</td>
<td>85%</td>
<td>% of total transportation energy from renewable resources</td>
</tr>
<tr>
<td>THERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Efficiency Savings</td>
<td>Trillion BTU (TBTU)</td>
<td>0.04</td>
<td>1.80</td>
<td>4.12</td>
<td>4.50</td>
<td>11.30</td>
<td>Cumulative energy savings from building efficiency</td>
</tr>
<tr>
<td>Wood Heat</td>
<td>TBTU</td>
<td>10.2</td>
<td>9.2</td>
<td>10.26</td>
<td>10.26</td>
<td>9.0</td>
<td>Includes cordwood, pellets, and woodchips</td>
</tr>
<tr>
<td>Biofuels</td>
<td>TBTU</td>
<td>0</td>
<td>N/A</td>
<td>0.62</td>
<td>*</td>
<td>4.0</td>
<td>% of heating demand met by liquid biofuels (residential & commercial)</td>
</tr>
<tr>
<td>Heat Pumps</td>
<td>Total # of heat pump systems</td>
<td>0</td>
<td>10,700</td>
<td>35,000</td>
<td>100,700</td>
<td>237,000</td>
<td>% reduction in fossil fuel heating due to heat pumps (residential & commercial)</td>
</tr>
</tbody>
</table>

¹ Includes electric vehicles, plug-in hybrids, and battery electric vehicles.
² Includes alternative fuel vehicles and plug-in hybrids.
³ Includes electric vehicles and plug-in hybrids.
⁴ Includes biofuels, ethanol, and biodiesel.
⁵ Includes solar, wind, and hydro.
⁶ Includes small-scale hydro, solar, wind, and hydro.
⁷ Includes small-scale hydro, solar, wind, and hydro.
⁸ Includes small-scale hydro, solar, wind, and hydro.
⁹ Includes small-scale hydro, solar, wind, and hydro.
¹⁰ Includes small-scale hydro, solar, wind, and hydro.
¹¹ Includes small-scale hydro, solar, wind, and hydro.
¹² Includes small-scale hydro, solar, wind, and hydro.
¹³ Includes small-scale hydro, solar, wind, and hydro.
¹⁴ Includes small-scale hydro, solar, wind, and hydro.
¹⁵ Includes small-scale hydro, solar, wind, and hydro.
¹⁶ Includes small-scale hydro, solar, wind, and hydro.
¹⁷ Includes small-scale hydro, solar, wind, and hydro.
¹⁸ Includes small-scale hydro, solar, wind, and hydro.
¹⁹ Includes small-scale hydro, solar, wind, and hydro.
²⁰ Includes small-scale hydro, solar, wind, and hydro.
²¹ Includes small-scale hydro, solar, wind, and hydro.
²² Includes small-scale hydro, solar, wind, and hydro.
²³ Includes small-scale hydro, solar, wind, and hydro.
²⁴ Includes small-scale hydro, solar, wind, and hydro.
²⁵ Includes small-scale hydro, solar, wind, and hydro.
²⁶ Includes small-scale hydro, solar, wind, and hydro.
²⁷ Includes small-scale hydro, solar, wind, and hydro.
²⁸ Includes small-scale hydro, solar, wind, and hydro.
²⁹ Includes small-scale hydro, solar, wind, and hydro.
³⁰ Includes small-scale hydro, solar, wind, and hydro.
³¹ Includes small-scale hydro, solar, wind, and hydro.
³² Includes small-scale hydro, solar, wind, and hydro.
³³ Includes small-scale hydro, solar, wind, and hydro.
³⁴ Includes small-scale hydro, solar, wind, and hydro.
³⁵ Includes small-scale hydro, solar, wind, and hydro.
³⁶ Includes small-scale hydro, solar, wind, and hydro.
³⁷ Includes small-scale hydro, solar, wind, and hydro.
³⁸ Includes small-scale hydro, solar, wind, and hydro.
³⁹ Includes small-scale hydro, solar, wind, and hydro.
⁴⁰ Includes small-scale hydro, solar, wind, and hydro.
⁴¹ Includes small-scale hydro, solar, wind, and hydro.
⁴² Includes small-scale hydro, solar, wind, and hydro.
⁴³ Includes small-scale hydro, solar, wind, and hydro.
⁴⁴ Includes small-scale hydro, solar, wind, and hydro.
⁴⁵ Includes small-scale hydro, solar, wind, and hydro.
⁴⁶ Includes small-scale hydro, solar, wind, and hydro.
⁴⁷ Includes small-scale hydro, solar, wind, and hydro.
⁴⁸ Includes small-scale hydro, solar, wind, and hydro.
⁴⁹ Includes small-scale hydro, solar, wind, and hydro.
⁵⁰ Includes small-scale hydro, solar, wind, and hydro.
⁵¹ Includes small-scale hydro, solar, wind, and hydro.
⁵² Includes small-scale hydro, solar, wind, and hydro.
⁵³ Includes small-scale hydro, solar, wind, and hydro.
⁵⁴ Includes small-scale hydro, solar, wind, and hydro.
⁵⁵ Includes small-scale hydro, solar, wind, and hydro.
⁵⁶ Includes small-scale hydro, solar, wind, and hydro.
⁵⁷ Includes small-scale hydro, solar, wind, and hydro.
⁵⁸ Includes small-scale hydro, solar, wind, and hydro.
⁵⁹ Includes small-scale hydro, solar, wind, and hydro.
⁶⁰ Includes small-scale hydro, solar, wind, and hydro.
⁶¹ Includes small-scale hydro, solar, wind, and hydro.
⁶² Includes small-scale hydro, solar, wind, and hydro.
⁶³ Includes small-scale hydro, solar, wind, and hydro.
⁶⁴ Includes small-scale hydro, solar, wind, and hydro.
⁶⁵ Includes small-scale hydro, solar, wind, and hydro.
⁶⁶ Includes small-scale hydro, solar, wind, and hydro.
⁶⁷ Includes small-scale hydro, solar, wind, and hydro.
⁶⁸ Includes small-scale hydro, solar, wind, and hydro.
⁶⁹ Includes small-scale hydro, solar, wind, and hydro.
⁷⁰ Includes small-scale hydro, solar, wind, and hydro.
⁷¹ Includes small-scale hydro, solar, wind, and hydro.
⁷² Includes small-scale hydro, solar, wind, and hydro.
⁷³ Includes small-scale hydro, solar, wind, and hydro.
⁷⁴ Includes small-scale hydro, solar, wind, and hydro.
⁷⁵ Includes small-scale hydro, solar, wind, and hydro.
⁷⁶ Includes small-scale hydro, solar, wind, and hydro.
⁷⁷ Includes small-scale hydro, solar, wind, and hydro.
⁷⁸ Includes small-scale hydro, solar, wind, and hydro.
⁷⁹ Includes small-scale hydro, solar, wind, and hydro.
⁸⁰ Includes small-scale hydro, solar, wind, and hydro.
⁸¹ Includes small-scale hydro, solar, wind, and hydro.
⁸² Includes small-scale hydro, solar, wind, and hydro.
⁸³ Includes small-scale hydro, solar, wind, and hydro.
⁸⁴ Includes small-scale hydro, solar, wind, and hydro.
⁸⁵ Includes small-scale hydro, solar, wind, and hydro.
⁸⁶ Includes small-scale hydro, solar, wind, and hydro.
⁸⁷ Includes small-scale hydro, solar, wind, and hydro.
⁸⁸ Includes small-scale hydro, solar, wind, and hydro.
⁸⁹ Includes small-scale hydro, solar, wind, and hydro.
⁹⁰ Includes small-scale hydro, solar, wind, and hydro.
⁹¹ Includes small-scale hydro, solar, wind, and hydro.
⁹² Includes small-scale hydro, solar, wind, and hydro.
⁹³ Includes small-scale hydro, solar, wind, and hydro.
⁹⁴ Includes small-scale hydro, solar, wind, and hydro.
⁹⁵ Includes small-scale hydro, solar, wind, and hydro.
⁹⁶ Includes small-scale hydro, solar, wind, and hydro.
⁹⁷ Includes small-scale hydro, solar, wind, and hydro.
⁹⁸ Includes small-scale hydro, solar, wind, and hydro.
⁹⁹ Includes small-scale hydro, solar, wind, and hydro.
ål Includes small-scale hydro, solar, wind, and hydro.
ELECTRIC

<table>
<thead>
<tr>
<th>Wind</th>
<th>Solar</th>
<th>Hydro (VT small)</th>
<th>Hydro-Québec (import)</th>
<th>Total Electric Source Energy</th>
<th>Total Renewable Energy Share</th>
<th>Total Electric Demand</th>
<th>Total Renewable Energy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megawatts</td>
<td>7.4</td>
<td>1.3</td>
<td>5.0</td>
<td>5.1</td>
<td>14.9</td>
<td>22.5</td>
<td>27.0</td>
</tr>
<tr>
<td>% of total electric power generation</td>
<td>0.2%</td>
<td>0.3%</td>
<td>10%</td>
<td>10%</td>
<td>15%</td>
<td>16%</td>
<td>20%</td>
</tr>
<tr>
<td>Total Electric Generation</td>
<td>5.065</td>
<td>0.566</td>
<td>5.65</td>
<td>5.127</td>
<td>16.342</td>
<td>24.82</td>
<td>30.0</td>
</tr>
<tr>
<td>Hours</td>
<td>444</td>
<td>44.4</td>
<td>495</td>
<td>495</td>
<td>990</td>
<td>990</td>
<td>990</td>
</tr>
<tr>
<td>Total Electric Renewable Share</td>
<td>63%</td>
<td>63%</td>
<td>67%</td>
<td>67%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>Total Electric Retail Sales</td>
<td>312.4</td>
<td>312.4</td>
<td>312.4</td>
<td>312.4</td>
<td>312.4</td>
<td>312.4</td>
<td>312.4</td>
</tr>
<tr>
<td>source Energy for electrical generation</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

SOURCES

1. EAN’s Path to Paris model shows a greater adoption of renewable energy technology than the model to reach 25% by 2025. Both are included here to demonstrate the difference. The Path to Paris model only includes the top ten measures to reach the Paris Agreement commitment, but includes a 20% buffer, which would allow for increased adoption of other measures.
2. Transportation data is from the EIA (2016), the UVM Transportation Research Center (2016 and 2017) and Drive Electric Vermont (Oct 2018). Thermal data from EIA (2016), Efficiency Vermont (2017), Vermont Gas (2017) and the Department of Public Service (DPS) (2017). Electric data from the Department of Public Service (2017) and the Department of Public Service (2017) and Certificates of Public Good (December 2018).
4. EAN’s Path to Paris model shows a greater adoption of renewable energy technology than the model to reach 25% by 2025. Both are included here to demonstrate the difference. The Path to Paris model only includes the top ten measures to reach the Paris Agreement commitment, but includes a 20% buffer, which would allow for increased adoption of other measures.
5. Transportation data is from the EIA (2016), the UVM Transportation Research Center (2016 and 2017) and Drive Electric Vermont (Oct 2018). Thermal data from EIA (2016), Efficiency Vermont (2017), Vermont Gas (2017) and the Department of Public Service (DPS) (2017). Electric data from the Department of Public Service (2017) and the Department of Public Service (2017) and Certificates of Public Good (December 2018).
6. EAN’s Path to Paris model shows a greater adoption of renewable energy technology than the model to reach 25% by 2025. Both are included here to demonstrate the difference. The Path to Paris model only includes the top ten measures to reach the Paris Agreement commitment, but includes a 20% buffer, which would allow for increased adoption of other measures.
8. EAN’s Path to Paris model shows a greater adoption of renewable energy technology than the model to reach 25% by 2025. Both are included here to demonstrate the difference. The Path to Paris model only includes the top ten measures to reach the Paris Agreement commitment, but includes a 20% buffer, which would allow for increased adoption of other measures.
VT statutory energy & emissions targets, 2017 status

OVERALL STATUS
- **Already met or on track to meet**
- **Not met or not on track to meet**

CHANGE FROM LAST YEAR
- Year-to-year progress flat
- Increasing rate of year-to-year progress
- Decreasing rate of year-to-year progress

GOAL OR STATUTE

<table>
<thead>
<tr>
<th>Description</th>
<th>Target</th>
<th>Target Date</th>
<th>Overall Status</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL ENERGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEP (2016): Meet 90% of the state's total energy needs through renewables — including thermal, transportation, and electric (Note: energy sourced in-state and out-of-state).</td>
<td>90%</td>
<td>2050</td>
<td>19.4%</td>
<td>▶</td>
</tr>
<tr>
<td>CEP (2016): Reduce total energy use (from 2010 levels) by over 30% by 2050 through efficiency and conservation, across thermal, transportation, and electric.</td>
<td>-30% 90 trillion BTU</td>
<td>2050</td>
<td>-1% 149 trillion BTU (2016)</td>
<td>▼</td>
</tr>
<tr>
<td>10 V.S.A. 580(e)(7): Produce 25% of all energy consumed within the state through the use of renewable energy sources, particularly from forests and farms (in-state).</td>
<td>25%</td>
<td>2025</td>
<td></td>
<td>▼</td>
</tr>
<tr>
<td>30 V.S.A. 8002 (2015): Statewide Total Energy Program (STEP)/Tier 3 — Reduce 2% of utility sales (BTU equivalency) in 2017 to reduce fossil fuel consumption, rising to 12% in 2032. Projects must be in-state, in service in 2015 or later.</td>
<td>2%</td>
<td>2025</td>
<td>12%</td>
<td>▲</td>
</tr>
<tr>
<td>24 V.S.A. 4302(c)(7) (2016): Develop energy plans for regions and municipalities consistent with the CEP goals.</td>
<td>11 regions</td>
<td>2018 for RPCs</td>
<td>11 approved (RPC) 11 approved (town)</td>
<td>▶</td>
</tr>
<tr>
<td>GREEN EMISSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 V.S.A. 578(e)(4): Reduce greenhouse gas emissions within the state and from outside the state’s boundaries caused by the use of energy within the state by 50% of 1990 levels by 2028, and if practicable using reasonable efforts, by 75% of by 2050 (in-state and out-of-state).</td>
<td>-50%</td>
<td>2028</td>
<td>+18% (2015)</td>
<td>▼</td>
</tr>
<tr>
<td>Paris Agreement: Reduce GHG emissions by 26%-28% below 2005 levels.</td>
<td>26-28%</td>
<td>2025</td>
<td></td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Reduce total transportation energy use by 20% from 2015 levels by 2025.</td>
<td>-20% 19.1 trillion BTU</td>
<td>2025</td>
<td>-2% 19.9 trillion BTU</td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Reduce transportation-emitted GHGs by 30% from 1990 levels by 2025.</td>
<td>-30% 1.22 MMTCO2e</td>
<td>2025</td>
<td>+34% 4.33 MMTCO2e (2015)</td>
<td>▲</td>
</tr>
<tr>
<td>CEP (2016): Hold vehicle miles traveled (VMT) per capita to 2011 levels.</td>
<td>11,402</td>
<td>2030</td>
<td></td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Reduce share of single-occupancy vehicle commute trips by 20% of 2011 levels (79.2%).</td>
<td>-20%</td>
<td>2030</td>
<td>+1.4% 81.4% (2017)</td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Double the share of bicycle and pedestrian commute trips to 16.6%.</td>
<td>15.6%</td>
<td>2030</td>
<td>7.0% (2015)</td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Increase public transit ridership by 110% to 8.7 million annual trips.</td>
<td>8.7 M</td>
<td>2030</td>
<td>4.69M (2017)</td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Quadruple Vermont-based passenger rail trips from 2011 levels (91,942) to 400,000 trips annually.</td>
<td>400,000</td>
<td>2030</td>
<td>94,157 (2017)</td>
<td>▲</td>
</tr>
<tr>
<td>CEP (2016): Double rail freight tonnage in the state from 2011 levels (6.6 million tons).</td>
<td>13.2 million tons</td>
<td>2030</td>
<td>7.3 million tons (2014)</td>
<td>N/A</td>
</tr>
<tr>
<td>CEP (2016): Increase % of the vehicle fleet that are Plug-in Electric Vehicles to 10% by 2025.</td>
<td>10%</td>
<td>2025</td>
<td>0.5% (2018)</td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Increase number of medium and heavy-duty vehicles powered by biodiesel, CNG, and electric to 10% by 2025.</td>
<td>10%</td>
<td>2025</td>
<td>No Data</td>
<td>N/A</td>
</tr>
<tr>
<td>TRANSPORTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 V.S.A. 581 (2007): Improve the energy fitness of at least 20% of the state’s housing stock (total 2007 = 300,000 units) by 2017, and 25% by 2020.</td>
<td>60,000</td>
<td>2017</td>
<td>25,409 (2017)</td>
<td>▼</td>
</tr>
<tr>
<td>10 V.S.A. 581 (2007): Reduce the annual fuel needs and fuel bills by an average of 25% in housing units served.</td>
<td>80,000</td>
<td>2022</td>
<td>25% average savings per house</td>
<td>▼</td>
</tr>
<tr>
<td>CEP (2016): Install 35,000 cold climate heat pump systems by 2025.</td>
<td>35,000</td>
<td>2025</td>
<td>10,694+</td>
<td>▲</td>
</tr>
<tr>
<td>CEP (2016): Increase wood’s share of building heat to 35% by 2030.</td>
<td>35%</td>
<td>2030</td>
<td>21% (2016)</td>
<td>▼</td>
</tr>
<tr>
<td>THERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 V.S.A. 8002 (2015): RES Tier 1: Total Renewable Electric — Obtain 55% of annual electric sales from renewables for each retail electricity provider in Vermont by 2017, and 75% by 2032. RECs retained (in-state and out-of-state).</td>
<td>55%</td>
<td>2017</td>
<td>75%</td>
<td>▼</td>
</tr>
<tr>
<td>30 V.S.A. 8002 (2015): RES Tier 2: Distributed Generation — Require 1% of electric sales to come from distributed generation in 2017, rising to 10% by 2032. Projects starting in mid 2015 are eligible, and new NH and SO projects count if RECs are retired (in-state).</td>
<td>1%</td>
<td>2017</td>
<td>10%</td>
<td>▼</td>
</tr>
<tr>
<td>30 V.S.A. 8002(a)(7)(ii): Issue Standard Offer contracts to new SO plants until a cumulative capacity of 127.5 MW is reached (new plants 2.2MW or less commissioned on or after Sept. 30, 2009). (in-state)</td>
<td>127.5 MW</td>
<td>2022</td>
<td>93 MW contracts awarded 64 MW projects commissioned</td>
<td>▼</td>
</tr>
</tbody>
</table>

Footnotes
1. Energy Information Administration, calculated from total energy consumed (2016). 2. We did not receive new data for these metrics. 3. Only represents the amount met with Energy Transformation projects, not Tier 2 RECs that were used for Tier 3 compliance. All utilities were compliant with Tier 3 requirements. 4. The latest data, from 2017, was the first full year of accounting for the Renewable Energy Standard, so the trend is unclear so far. 5. 2018 ARN Brief — Vermont Greenhouse Gas Emissions Inventory Update (1990-2015). 6. All Transportation data (other than Emissions) from the UVM Transportation Research Center. 7. Department of Public Service. 2018 Building Energy Report. 8. Efficiency Vermont (2017). Assumes rebates cover 75% of heat pumps sold. 9. Biomass Energy Resource Center. VEIC, “Wood Heating in Vermont: A Baseline Assessment,” 2016. 10. Department of Public Service. Utilities were obligated to retire RECs equivalent to 55% of retail sales in 2017, the first full year of REC compliance. 11. Department of Public Service.
In 2018, EAN expanded its role as Vermont’s trusted, go-to resource for total energy tracking and analysis. Through our Annual Progress Report and the Vermont Energy Dashboard, we provided key resources for EAN members, policymakers, and community leaders. We ensured the dissemination of important data and analysis through presentations and webinars to local and state leaders as well as by engaging in the Vermont Climate Action Commission. Together these efforts increased understanding of Vermont’s total energy and emissions reduction commitments, what it will take to meet them, and the benefits that Vermonters stand to gain when we do so.

Building on that work, this Annual Progress Report—our most comprehensive yet—summarizes where we stand as of 2018 relative to the State of Vermont’s renewable energy and greenhouse gas emissions reduction commitments. EAN’s goals are Vermont’s goals, and the measure of our success as a Network is the extent to which we help Vermonters reap the benefits of transitioning to an efficient and renewable energy future.

Today, our energy progress is a tale of two Vermonts. On the one hand, thanks mostly to the increasing renewability of our electric sector, Vermont was 19% renewable as of 2018, with a good chance of meeting the first milestone of our Comprehensive Energy Plan: 25% renewable by 2025. On the other hand, we are falling far short of our greenhouse gas emissions reduction commitments.

The great challenge and opportunity for Vermont over the next six years is to preserve and continue the progress we have made in the electric sector while also moving beyond fossil fuels for our transportation and heating needs. We will only achieve the scale and pace of progress we need on both energy and emissions when we transform the inefficient, costly, and polluting sectors of transportation and heating that make up the vast majority of our fossil fuel use and emissions.

Beyond reducing climate pollution, meeting these goals will save Vermonters money and strengthen our local economy. Renewable heating options like advanced wood heat and cold climate heat pumps have lower and more stable fuel prices than fossil fuel systems. Importantly for transportation, which imposes the largest energy burden on Vermonters, total ownership costs for new EVs are now lower than comparable fossil fuel vehicles. And when we heat with renewables or drive electric vehicles, far more of our money stays here in Vermont, supporting jobs for our neighbors.

The status quo of Vermont’s fossil fuel dependence is damaging our economy and health—especially for lower-income Vermonters. How we get to 90% by 2050 and reduce our climate pollution matters greatly. There are solutions available right now that can create a more just, thriving, and sustainable future for all Vermonters, and it is those we must prioritize.

As we do so, we can learn from the policy successes of places like California, Québec, and British Columbia, which have managed to significantly reduce emissions while also achieving impressive economic growth. Quite simply, Vermont will only meet its commitment to the Paris agreement (and 90% renewable by 2050) and drive significant green economic growth if we chart a similar, economy-wide path. Anything less is not worthy of our State’s history of innovation and leadership, nor of our responsibility to the current and future generations who are counting on us to take comprehensive action now.

Jared Duval
Executive Director

Leigh Seddon
President
Key Activities: Convening the Network

In March 2018, EAN hosted an information session on the Western Climate Initiative (WCI), inviting members of the Québec delegation to speak to network leaders and state partners about the process and benefits of WCI.

The success of this event inspired the launch of EAN’s monthly Leveraging Change Speaker Series, which kicked off in November 2018 with a conversation about the Transportation & Climate Initiative (TCI) and the possibility to expand the Regional Greenhouse Gas Initiative (RGGI) model to cover GHG emissions beyond the electric sector. The events will continue throughout 2019 on the third Thursday of each month.

In fall 2018, EAN launched the Vermont Energy Future Initiative, a diverse, multi-sectoral group of leaders from across Vermont convened by the Energy Action Network. The shared goal of all Initiative members is to develop ideas and advance actions that can make significant progress towards meeting Vermont’s 2025 total energy and emissions reduction commitments while creating a more just, thriving, and sustainable state for Vermonters.

Initiative members will be engaging in research and connecting with the broader network throughout 2019, culminating in EAN’s Annual Summit in fall 2019.
Key Activities: Vermont Energy Dashboard Updates

EAN recently completed the Community Progress Maps, the newest tool in the suite of energy progress tracking tools found on the Vermont Energy Dashboard. This one-stop-shop for energy information and resources represents the first time that such a rich amount of total energy data has been presented all in one place, in a user-friendly and mappable way.

Users now have the ability to identify, analyze and map existing and promising locations for renewable energy and energy efficiency projects, quickly compare per-capita statistics, see annual changes by energy category, view all statistics for your community, and utilize a timeline feature to visualize progress over time.

Thanks to dozens of data partners across the state, Vermont policymakers and planners can now see how their region and town compare on over 200 total energy metrics.

Visit the Community Progress Maps to discover how many electric vehicles or hybrids are registered in your town, the number of homes heated by cold climate heat pumps or advance wood heat, how many homes have on-site battery storage, and how many homes have recently been weatherized.
Who We Are: Member List

Energy Action Network (EAN) consists of over 100 active members representing businesses, utilities, nonprofits, and higher education, along with over 100 local, state, and federal public partners. All EAN members share a mission of achieving Vermont’s 90% renewable by 2050 total energy commitment and of significantly reducing Vermont’s greenhouse gas emissions in ways that create a more just, thriving, and sustainable future for Vermonters.

Businesses
- **3E Thermal**
 - Scott Campbell
- **AllEarth Renewables**
 - David Blittersdorf, Nick Charyk
- **Bee the Change**
 - Mike Kiernan
- **Black Bear Biodiesel**
 - Jim Malloy
- **Bourne’s Energy**
 - Peter Bourne
- **Building Energy**
 - Russ Flanigan
- **Built by Newport**
 - Dave Laforce
- **Butternut Mountain Farm**
 - David Marvin, Ira Marvin, Emma Marvin
- **Casella**
 - Joe Fusco
- **Catalyst Financial**
 - Bob Barton, Marianne Barton
- **Catamount Solar**
 - Dan Kinney, Kevin McCollister
- **Dynapower**
 - Adam Knudsen, Richard Morin
- **EAPC Wind Energy**
 - Robert Sherman, Nicholas Laskovski
- **Encore**
 - Chad Farrell, Phillip Foy, Derek Moretz, Chad Nichols
- **Energy Co-op of Vermont**
 - Brian Gray
- **Energy Futures Group**
 - Richard Faesy, Dan Mellinger, Gabrielle Stebbins
- **Forward Thinking**
 - Jeff Forward
- **Fresh Tracks Capital**
 - Cairn Cross, Lee Bouyea
- **Gardener’s Supply**
 - Jim Feinson
- **Grassroots Solar**
 - Bill Laberge
- **Green Lantern Group**
 - Luke Shullenberger, Bill Miller, Sam Carlson, Ralph Meima
- **L.W. Seddon, LLC**
 - Leigh Seddon
- **KSV**
 - Harrison Grubbs
- **Maclay Architects**
 - Bill Maclay
- **MMR**
 - Justin Johnson
- **Montpelier Construction**
 - Malcolm Gray
- **National Life Group**
 - Tim Shea
- **New Leaf Design**
 - Tom Perry
- **Norwich Solar Technologies**
 - Jim Merriam
- **NRG Systems**
 - Justin Wheating, Anna Grady
- **Optimal Energy**
 - Elizabeth Chant
- **Packetized Energy**
 - Scott Johnstone, Kate Desrochers
- **Pellergy**
 - Andy Boatin
- **Pomerleau Real Estate**
 - Ernie Pomerleau
- **Rath Young and Pignatelli, P.C.**
 - Mary Peterson
- **Regulatory Assistance Project (RAP)**
 - Rick Weston
- **Reiss Building and Renovation**
 - Chuck Reiss
- **Seventh Generation**
 - Ashley Orgain
- **SunCommon**
 - James Moore, Duane Peterson
- **Sunrun**
 - Nathan Wyeth
- **Sunwood Biomass**
 - David Frank
- **Union Mutual Insurance**
 - Michael Nobles
- **Vanesse Hangen Brustlin, Inc (VHB)**
 - Carla Fenner
- **Vermont Economic Development Authority (VEDA)**
 - Jo Bradley
- **Vermont Housing Finance Agency**
 - Maura Collins
- **Vermont Wood Pellet Co.**
 - Chris Brooks
- **VSECU**
 - Rob Miller, Laurie Fielder, Simeon Chapin

Utilities
- **Burlington Electric Department**
 - Darren Springer, Mike Kanarick, Jennifer Green, Tom Lyle, Chris Burns
- **Efficiency Vermont**
 - Rebecca Foster, Barry Hulce, Abby White, Paul Markowitz, Kelly Lucci
- **Green Mountain Power**
 - Mary Powell, Brian Otley, Robert Dostis, Kristin Carlson, Josh Castonguay
- **Hardwick Electric Department**
 - Mary Westervelt
- **Vermont Electric Power Company (VELCO)**
 - Tom Dunn, Colin Owyang, Mark Sciarotta, Lou Cecere
- **Vermont Electric Cooperative**
 - Rebecca Towne, Andrea Cohen, Jake Brown
- **Vermont Gas**
 - Don Rendall, Tom Murray, Tiana Smith
- **Vermont Public Power Supply Authority (VPPSA)**
 - Ken Nolan, Melissa Bailey
- **Washington Electric Coop**
 - Patty Richards, Barry Bernstein, Roger Fox

Nonprofits
- **Associated Industries of Vermont (AIV)**
 - William Sayre
- **Audubon Vermont**
 - David Mears, Margaret Fowle
- **Biomass Energy Resource Center**
 - Adam Sherman
Building Performance Professionals Association of Vermont
Jonathan Dancing, Malcolm Gray

Capstone Community Action
Sue Minter, Paul Zabriskie

Champlain Valley Office of Economic Opportunity (CVOE)
Dwight DeCoste

Conservation Law Foundation
Jen Duggan, Sandy Levine

Drive Electric Vermont (DEV)
David Roberts

Fairbanks Museum
Adam Kane

Fresh Energy (Minnesota)
Rob Davis

Intervale Center
Travis Marcotte

Lake Champlain Regional Chamber of Commerce
Tom Torti, Catherine Davis, Austin Davis

LocalMotion
Karen Yacos, Ross Saxton

Neighborworks of Western Vermont
Ludy Biddle, Melanie Paskevich

New England Grassroots Environmental Fund
Julia Dundorf

Northeastern Vermont Regional Hospital
Laural Ruggles

Northern Forest Center
Rob Riley, Maura Adams, Joe Short

Public Assets Institute
Stephanie Yu

Renewable Energy Vermont (REV)
Olivia Campbell Andersen, Ansley Bloomer

Shelburne Farms
Megan Camp

The Nature Conservancy
Heather Furman, Phil Huffman

UVM Medical Center
Dawn LeBaron

Vermont Businesses for Social Responsibility
Jane Campbell, Dan Barlow

Vermont Climate and Health Alliance
Dan Quinlan

Vermont Council on Rural Development
Paul Costello, Jenna Koloski, Jon Copans, Margaret McCoy

Vermont Energy and Climate Action Network (VECAN)
Johanna Miller

Vermont Energy Education Program
Cara Robechek, Mariah Keagy, Stephen Knowlton

Vermont Energy Investment Corporation (VEIC)
Jim Madej, Christine Donovan, Karen Glitman, David Hill, Damon Lane, Jennifer Wallace-Brodeur, Richard Donnelly, Mary Sprayregen, Peter Adamczyk, Justine Sears, Zoe Erdman, Kerrick Johnson

Vermont Interfaith Power and Light
Richard Hibbert, Sam Swanson, Betsy Hardy

Vermont Land Trust
Nick Richardson

Vermont League of Cities and Towns
Karen Horn, Abby Friedman

Vermont Natural Resources Council
Brian Shape, Johanna Miller, Kate McCarthy, Jamey Fidel, Ian Hitchcock

Vermont Public Interest Research Group (VIPRG)
Paul Burns, Ben Walsh, Kanika Gandhi

Vermont Sustainable Jobs Fund
Ellen Kahler, Janice St Onge, Christine McGowan, Jake Claro, Geoff Robertson

Vital Communities
Tom Roberts, Sarah Brock

Higher Education

ChAMPLAIN COLLEGE
Donald Lacksman

Dartmouth College, Tuck School of Business
April Sales

Goddard College
Robert Kenney, Catherine Lawther

Middlebury College
Diane Munroe, Dan Suarez

Norwich University, Center for Global Resilience and Security
Tara Kulkarni

Pace Law School Energy and Climate Center
Sam Swanson

University of Vermont (UVM)
Jon Erickson, Richard Watts, Amy Seidl, Abby Bleything

UVM Extension
Chuck Ross, Sidney Bosworth, Sarah Tichonuk

UVM Gund Institute
Taylor Ricketts, Jeannine Valcour, Eric Zencey

Vermont Law School
Thomas McHenry, Michael Dworkin, Kevin Jones, Christa Shute

Vermont Technical College
Pat Moulton

Public Partners

LOCAL

Legislators: Vermont’s State Representatives and Senators

Energy Committees: Town Energy Committees from across Vermont

Cities and Towns: Burlington (Mayor Miro Weinberger; Neale Lunderville, CEDO Director), Montpelier (Mayor Anne Watson), South Burlington (Paul Conner, Director of Sustainability), Hartford (Geoff Martin, Sustainability Coordinator)

REGIONAL

Regional Development Corporations:
Adam Grinold (Brattleboro Development Credit Corporation), Dave Sne德er (Northern Vermont Development Association)

Regional Planning Commissions: Adam Lougee (Addison), Dee Gish and Peter Gregory (Two Rivers Ottauquechee), Jim Sullivan (Bennington County), Melanie Needle and Charlie Baker (Chittenden), Catherine Dimentruck (Northwest), Dave Sne德er and Alison Low (Northern Vermont Development Association), Chris Campy and Marion Major (Windham), Bonnie Waninger (Central Vermont)

STATE

Agency of Agriculture, Food and Markets:
Anson Tebbetts, Diane Bothfeld

Agency of Commerce and Community Development:
Richard Glitman, Ted Brady

Agency of Natural Resources:
Julie Moore, Peter Walke

Agency of Transportation:
Joe Flynn

Dept of Buildings and General Services:
Chris Cole

Dept of Environmental Conservation:
Emily Boedecker, Rebecca Ellis

Dept of Financial Regulations:
Michael Pieciak

DEPARTMENTAL

Vermont State Treasurer:
Beth Pearce

DEPARTMENTAL

Office of Congressman Peter Welch:
George Twigg

Office of Senator Bernie Sanders:
Haley Pero

Office of Senator Patrick Leahy:
Tom Berry, Chris Saunders

USDAA Rural Development, VT/NH Office:
Jon-Michael Muise, Ben Doyle
Funding, Expenses & Financial Sustainability

In the past year, EAN has maintained and strengthened ties with our existing funders while engaging several new supporters as well.

The charts below show the broad components of EAN’s budget for Fiscal Year 2018. Overall, 86% of EAN’s budget supported direct program work and the development of the capacity of our network. Operations costs continue to be small and highly leveraged in support of active, value-added programs.

TOTAL EXPENSES

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY18 Program Expenses</td>
<td>$338,161</td>
</tr>
<tr>
<td>Operations (Admin & Office)</td>
<td>$53,954</td>
</tr>
<tr>
<td>Total Expenses</td>
<td>$392,115</td>
</tr>
<tr>
<td>FY 2019 Program Contracts</td>
<td>$93,951</td>
</tr>
</tbody>
</table>

TOTAL EXPENSES & FUND ALLOCATIONS $486,066

TOTAL REVENUES

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maverick Lloyd Foundation</td>
<td>$150,000</td>
</tr>
<tr>
<td>VLITE</td>
<td>$97,500</td>
</tr>
<tr>
<td>Garfield Foundation</td>
<td>$60,000</td>
</tr>
<tr>
<td>High Meadows Fund</td>
<td>$50,000</td>
</tr>
<tr>
<td>John Merck Fund</td>
<td>$50,000</td>
</tr>
<tr>
<td>Sustainable Future Fund</td>
<td>$25,000</td>
</tr>
<tr>
<td>VSECU</td>
<td>$20,000</td>
</tr>
<tr>
<td>Efficiency Vermont</td>
<td>$11,868</td>
</tr>
<tr>
<td>USDA Rural Development</td>
<td>$8,051</td>
</tr>
<tr>
<td>Burlington Electric Dept.</td>
<td>$6,650</td>
</tr>
<tr>
<td>Summit Revenue</td>
<td>$6,550</td>
</tr>
<tr>
<td>Other</td>
<td>$447</td>
</tr>
<tr>
<td>TOTAL REVENUES</td>
<td>$486,066</td>
</tr>
</tbody>
</table>
2018 Board of Directors & EAN Staff

Board of Directors

LEIGH SEDDON
EAN Board Chair
L.W. Seddon Consulting, President

ELLEN KAHLER
EAN Treasurer
Vermont Sustainable Jobs Fund, Executive Director

KAREN GLITMAN
EAN Secretary
Efficiency Vermont, Director

ROB MILLER
VSECU, President and CEO

CHRISTINE DONOVAN
VEIC, Director, Business Strategy and Innovation

DARREN SPRINGER
Burlington Electric Department, General Manager

MARY PETERSON
Rath, Young and Pignatelli, P.C., Senior Counsel

JIM MERRIAM
EAN Leverage Point Advisor
Norwich Solar Technologies, CEO

JIM SULLIVAN
EAN Leverage Point Advisor
Bennington County Regional Commission, Exec. Director and Planning Program Coordinator

SARAH BROCK
Vital Communities, Energy Program Manager

Staff

JARED DUVAL
Executive Director

SARAH WOLFE
Network Director

ROB FISH
Vermont Energy Dashboard Manager

Report Credits
Please distribute freely with credit to EAN. See eanvt.org for a digital version of the report and more information.
Design & layout by Dana Dwinell-Yardley.
Printed in Burlington, VT, by Queen City Printers.
Energy Action Network (EAN) works to achieve Vermont's 90% renewable by 2050 total energy commitment and to significantly reduce Vermont’s greenhouse gas emissions in ways that create a more just, thriving, and sustainable future for Vermonters.